Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Syst Appl Microbiol ; 44(3): 126187, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33677170

RESUMO

Although at least two genetically distinct groups, or genomospecies, have been well documented for Campylobacter concisus, no phenotype has yet been identified for their differentiation and thus formal description as separate species. C. concisus has been isolated from a variety of sites in the human body, including saliva and stool samples from both healthy and diarrhoeic individuals. We evaluated the ability of a range of whole genome-based tools to distinguish between the two C. concisus genomospecies (GS) using a collection of 190 C. concisus genomes. Nine genomes from related Campylobacter species were included in some analyses to provide context. Analyses incorporating sequence analysis of multiple ribosomal genes generated similar levels of C. concisus GS discrimination as genome-wide comparisons. The C. concisus genomes formed two groups; GS1 represented by ATCC 33237T and GS2 by CCUG 19995. The two C. concisus GS were separated from the nine genomes of related species. GS1 and GS2 also differed in G+C content with medians of 37.56% and 39.51%, respectively. The groups are consistent with previously established GS and are supported by DNA reassociation results. Average Nucleotide Identity using MUMmer (ANIm) and Genome BLAST Distance Phylogeny generated in silico DNA-DNA hybridisation (isDDH) (against ATCC 33237T and CCUG 19995), plus G+C content provides cluster-independent GS discrimination suitable for routine use. Pan-genomic analysis identified genes specific to GS1 and GS2. WGS data and genomic species identification methods support the existence of two GS within C. concisus. These data provide genome-level metrics for strain identification to genomospecies level.


Assuntos
Campylobacter , Genoma Bacteriano , Filogenia , Composição de Bases , Campylobacter/classificação , Campylobacter/genética , Genômica , Hibridização de Ácido Nucleico
2.
Genome Announc ; 5(29)2017 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-28729281

RESUMO

We report the complete genome sequence of the Campylobacter concisus type strain ATCC 33237 and the draft genome sequences of eight additional well-characterized C. concisus strains. C. concisus has been shown to be a genetically heterogeneous species, and these nine genomes provide valuable information regarding the diversity within this taxon.

3.
Front Microbiol ; 7: 818, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27303397

RESUMO

MALDI-TOF MS has been utilized as a reliable and rapid tool for microbial fingerprinting at the genus and species levels. Recently, there has been keen interest in using MALDI-TOF MS beyond the genus and species levels to rapidly identify antibiotic resistant strains of bacteria. The purpose of this study was to enhance strain level resolution for Campylobacter jejuni through the optimization of spectrum processing parameters using a series of designed experiments. A collection of 172 strains of C. jejuni were collected from Luxembourg, New Zealand, North America, and South Africa, consisting of four groups of antibiotic resistant isolates. The groups included: (1) 65 strains resistant to cefoperazone (2) 26 resistant to cefoperazone and beta-lactams (3) 5 strains resistant to cefoperazone, beta-lactams, and tetracycline, and (4) 76 strains resistant to cefoperazone, teicoplanin, amphotericin, B and cephalothin. Initially, a model set of 16 strains (three biological replicates and three technical replicates per isolate, yielding a total of 144 spectra) of C. jejuni was subjected to each designed experiment to enhance detection of antibiotic resistance. The most optimal parameters were applied to the larger collection of 172 isolates (two biological replicates and three technical replicates per isolate, yielding a total of 1,031 spectra). We observed an increase in antibiotic resistance detection whenever either a curve based similarity coefficient (Pearson or ranked Pearson) was applied rather than a peak based (Dice) and/or the optimized preprocessing parameters were applied. Increases in antimicrobial resistance detection were scored using the jackknife maximum similarity technique following cluster analysis. From the first four groups of antibiotic resistant isolates, the optimized preprocessing parameters increased detection respective to the aforementioned groups by: (1) 5% (2) 9% (3) 10%, and (4) 2%. An additional second categorization was created from the collection consisting of 31 strains resistant to beta-lactams and 141 strains sensitive to beta-lactams. Applying optimal preprocessing parameters, beta-lactam resistance detection was increased by 34%. These results suggest that spectrum processing parameters, which are rarely optimized or adjusted, affect the performance of MALDI-TOF MS-based detection of antibiotic resistance and can be fine-tuned to enhance screening performance.

4.
Artigo em Inglês | MEDLINE | ID: mdl-22919636

RESUMO

Multilocus sequence typing (MLST) systems have been reported previously for multiple food- and food animal-associated Campylobacter species (e.g., C. jejuni, C. coli, C. lari, and C. fetus) to both differentiate strains and identify clonal lineages. These MLST methods focused primarily on campylobacters of human clinical (e.g., C. jejuni) or veterinary (e.g., C. fetus) relevance. However, other, emerging, Campylobacter species have been isolated increasingly from environmental, food animal, or human clinical samples. We describe herein four MLST methods for five emerging Campylobacter species: C. hyointestinalis, C. lanienae, C. sputorum, C. concisus, and C. curvus. The concisus/curvus method uses the loci aspA, atpA, glnA, gltA, glyA, ilvD, and pgm, whereas the other methods use the seven loci defined for C. jejuni (i.e., aspA, atpA, glnA, gltA, glyA, pgm, and tkt). Multiple food animal and human clinical C. hyointestinalis (n = 48), C. lanienae (n = 34), and C. sputorum (n = 24) isolates were typed, along with 86 human clinical C. concisus and C. curvus isolates. A large number of sequence types were identified using all four MLST methods. Additionally, these methods speciated unequivocally isolates that had been typed ambiguously using other molecular-based speciation methods, such as 16S rDNA sequencing. Finally, the design of degenerate primer pairs for some methods permitted the typing of related species; for example, the C. hyointestinalis primer pairs could be used to type C. fetus strains. Therefore, these novel Campylobacter MLST methods will prove useful in differentiating strains of multiple, emerging Campylobacter species.


Assuntos
Campylobacter/classificação , Campylobacter/genética , Tipagem de Sequências Multilocus/métodos , Animais , Animais Domésticos , Proteínas de Bactérias/genética , Campylobacter/isolamento & purificação , Infecções por Campylobacter/microbiologia , Infecções por Campylobacter/veterinária , Análise por Conglomerados , Primers do DNA/genética , DNA Bacteriano/química , DNA Bacteriano/genética , Genótipo , Humanos
7.
PLoS One ; 3(4): e2015, 2008 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-18431496

RESUMO

BACKGROUND: Campylobacter jejuni is a common cause of acute gastroenteritis and is also associated with the post-infectious neuropathies, Guillain-Barré and Miller Fisher syndromes. In the Cape Town area of South Africa, C. jejuni strains with Penner heat-stable (HS) serotype HS:41 have been observed to be overrepresented among cases of Guillain-Barré syndrome. The present study examined the genetic content of a collection of 32 South African C. jejuni strains with different serotypes, including 13 HS:41 strains, that were recovered from patients with enteritis, Guillain-Barré or Miller Fisher syndromes. The sequence-based typing methods, multilocus sequence typing and DNA microarrays, were employed to potentially identify distinguishing features within the genomes of these C. jejuni strains with various disease outcomes. METHODOLOGY/PRINCIPAL FINDINGS: Comparative genomic analyses demonstrated that the HS:41 South African strains were clearly distinct from the other South African strains. Further DNA microarray analysis demonstrated that the HS:41 strains from South African patients with the Guillain-Barré syndrome or enteritis were highly similar in gene content. Interestingly, the South African HS:41 strains were distinct in gene content when compared to HS:41 strains from other geographical locations due to the presence of genomic islands, referred to as Campylobacter jejuni integrated elements (CJIEs). Only the integrated element CJIE1, a Campylobacter Mu-like prophage, was present in the South African HS:41 strains whereas this element was absent in two closely-related HS:41 strains from Mexico. A more distantly-related HS:41 strain from Canada possessed both integrated elements CJIE1 and CJIE2. CONCLUSION/SIGNIFICANCE: These findings demonstrate that CJIEs may contribute to the differentiation of closely-related C. jejuni strains. In addition, the presence of bacteriophage-related genes in CJIE1 may contribute to the genomic diversity of C. jejuni strains. This comparative genomic analysis of C. jejuni provides fundamental information that potentially could lead to improved methods for analyzing the epidemiology of disease outbreaks.


Assuntos
Campylobacter jejuni/classificação , Campylobacter jejuni/genética , Genoma Bacteriano/genética , Genômica , Técnicas de Tipagem Bacteriana , Variação Genética , Humanos , Análise de Sequência com Séries de Oligonucleotídeos , Filogenia , Análise de Sequência de DNA , África do Sul , Especificidade da Espécie
8.
BMC Microbiol ; 7: 50, 2007 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-17535437

RESUMO

BACKGROUND: Campylobacter jejuni has been divided into two subspecies: C. jejuni subsp. jejuni (Cjj) and C. jejuni subsp. doylei (Cjd). Nearly all of the C. jejuni strains isolated are Cjj; nevertheless, although Cjd strains are isolated infrequently, they differ from Cjj in two key aspects: they are obtained primarily from human clinical samples and are associated often with bacteremia, in addition to gastroenteritis. In this study, we utilized multilocus sequence typing (MLST) and a DNA microarray-based comparative genomic indexing (CGI) approach to examine the genomic diversity and gene content of Cjd strains. RESULTS: A geographically diverse collection of eight Cjd strains was examined by MLST and determined to be phylogenetically distinct from Cjj strains. Microarray-based CGI approach also supported this. We were able to demonstrate that Cjd strains exhibited divergence from Cjj strains NCTC 11168 and RM1221 in many of the intraspecies hypervariable regions. Moreover, multiple metabolic, transport and virulence functions (e.g. cytolethal distending toxin) were shown to be absent in the Cjd strains examined. CONCLUSION: Our data demonstrate that Cjd are phylogenetically distinct from Cjj strains. Using the CGI approach, we identified subsets of absent genes from amongst the C. jejuni genes that provide clues as to the potential evolutionary origin and unusual pathogenicity of Cjd.


Assuntos
Campylobacter jejuni/classificação , Campylobacter jejuni/genética , Genes Bacterianos , Genoma Bacteriano/genética , Transporte Biológico/genética , Evolução Molecular , Deleção de Genes , Variação Genética , Genótipo , Humanos , Redes e Vias Metabólicas/genética , Hibridização de Ácido Nucleico , Análise de Sequência com Séries de Oligonucleotídeos , Fenótipo , Filogenia , Análise de Sequência de DNA , Homologia de Sequência , Fatores de Virulência/genética
9.
BMC Microbiol ; 7: 11, 2007 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-17328805

RESUMO

BACKGROUND: The human bacterial pathogen Campylobacter jejuni contains two subspecies: C. jejuni subsp. jejuni (Cjj) and C. jejuni subsp. doylei (Cjd). Although Cjd strains are isolated infrequently in many parts of the world, they are obtained primarily from human clinical samples and result in an unusual clinical symptomatology in that, in addition to gastroenteritis, they are associated often with bacteremia. In this study, we describe a novel multiplex PCR method, based on the nitrate reductase (nap) locus, that can be used to unambiguously subspeciate C. jejuni isolates. RESULTS: Internal and flanking napA and napB primer sets were designed, based on existing C. jejuni and Campylobacter coli genome sequences to create two multiplex PCR primer sets, nap mpx1 and nap mpx2. Genomic DNA from 161 C. jejuni subsp. jejuni (Cjj) and 27 C. jejuni subsp. doylei (Cjd) strains were amplified with these multiplex primer sets. The Cjd strains could be distinguished clearly from the Cjj strains using either nap mpx1 or mpx2. In addition, combination of either nap multiplex method with an existing lpxA speciation multiplex method resulted in the unambiguous and simultaneous speciation and subspeciation of the thermophilic Campylobacters. The Cjd nap amplicons were also sequenced: all Cjd strains tested contained identical 2761 bp deletions in napA and several Cjd strains contained deletions in napB. CONCLUSION: The nap multiplex PCR primer sets are robust and give a 100% discrimination of C. jejuni subspecies. The ability to rapidly subspeciate C. jejuni as well as speciate thermophilic Campylobacter species, most of which are pathogenic in humans, in a single amplification will be of value to clinical laboratories in strain identification and the determination of the environmental source of campylobacterioses caused by Cjd. Finally, the sequences of the Cjd napA and napB loci suggest that Cjd strains arose from a common ancestor, providing clues as to the potential evolutionary origin of Cjd.


Assuntos
Campylobacter jejuni/genética , Genoma Bacteriano/genética , Nitrato Redutase/genética , Reação em Cadeia da Polimerase/métodos , Campylobacter jejuni/classificação , DNA Bacteriano/química , DNA Bacteriano/genética , Dados de Sequência Molecular , Nitrato Redutase/metabolismo , Nitratos/metabolismo , Fenótipo , Análise de Sequência de DNA , Especificidade da Espécie
10.
Microbes Infect ; 8(7): 1955-66, 2006 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16716632

RESUMO

Antibiotic resistance, particularly with the fluoroquinolones and macrolide antibiotics, has now emerged globally with thermophilic campylobacters, including Campylobacter jejuni and C. coli, giving rise to concerns about how these organisms have acquired such resistance characteristics, as well as consequences for human and animal treatment. This review examines (i) the clinical epidemiology of antibiotic resistance in human and animal thermophilic campylobacters, (ii) an update on resistance rates globally, (iii) surveillance of antimicrobial resistance in campylobacters originating from animals, particularly poultry, (iv) the role of the environment in the acquisition and transmission of antibiotic-resistant campylobacters, as well as (v) issues of biocide resistance in campylobacters.


Assuntos
Antibacterianos/farmacologia , Infecções por Campylobacter/epidemiologia , Infecções por Campylobacter/microbiologia , Campylobacter/efeitos dos fármacos , Resistência a Medicamentos/genética , Animais , Infecções por Campylobacter/veterinária , Humanos
11.
BMC Microbiol ; 6: 32, 2006 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-16594990

RESUMO

BACKGROUND: Campylobacter jejuni is the predominant cause of antecedent infection in post-infectious neuropathies such as the Guillain-Barré (GBS) and Miller Fisher syndromes (MFS). GBS and MFS are probably induced by molecular mimicry between human gangliosides and bacterial lipo-oligosaccharides (LOS). This study describes a new C. jejuni-specific high-throughput AFLP (htAFLP) approach for detection and identification of DNA polymorphism, in general, and of putative GBS/MFS-markers, in particular. RESULTS: We compared 6 different isolates of the "genome strain" NCTC 11168 obtained from different laboratories. HtAFLP analysis generated approximately 3000 markers per stain, 19 of which were polymorphic. The DNA polymorphisms could not be confirmed by PCR-RFLP analysis, suggesting a baseline level of 0.6% AFLP artefacts. Comparison of NCTC 11168 with 4 GBS-associated strains revealed 23 potentially GBS-specific markers, 17 of which were identified by DNA sequencing. A collection of 27 GBS/MFS-associated and 17 enteritis control strains was analyzed with PCR-RFLP tests based on 11 of these markers. We identified 3 markers, located in the LOS biosynthesis genes cj1136, cj1138 and cj1139c, that were significantly associated with GBS (P = 0.024, P = 0.047 and P < 0.001, respectively). HtAFLP analysis of 13 highly clonal South African GBS/MFS-associated and enteritis control strains did not reveal GBS-specific markers. CONCLUSION: This study shows that bacterial GBS markers are limited in number and located in the LOS biosynthesis genes, which corroborates the current consensus that LOS mimicry may be the prime etiologic determinant of GBS. Furthermore, our results demonstrate that htAFLP, with its high reproducibility and resolution, is an effective technique for the detection and subsequent identification of putative bacterial disease markers.


Assuntos
Infecções por Campylobacter/microbiologia , Campylobacter jejuni/genética , Variação Genética , Síndrome de Guillain-Barré/microbiologia , Reação em Cadeia da Polimerase/métodos , Polimorfismo de Fragmento de Restrição , Proteínas de Bactérias/genética , Sequência de Bases , DNA Bacteriano/genética , Gangliosídeos , Marcadores Genéticos , Humanos , Lipopolissacarídeos/biossíntese , Mimetismo Molecular , Dados de Sequência Molecular , Polimorfismo Genético
12.
J Clin Microbiol ; 43(5): 2315-29, 2005 May.
Artigo em Inglês | MEDLINE | ID: mdl-15872261

RESUMO

A multilocus sequence typing (MLST) system has been reported previously for Campylobacter jejuni to both differentiate strains and identify clonal lineages. However, sequence variation at the MLST loci prevents its use for closely related Campylobacter species. We describe herein an expanded MLST method to include three clinically relevant Campylobacter species, C. coli, C. lari, and C. upsaliensis, and a fourth Campylobacter species, C. helveticus. The C. coli and C. helveticus methods use the same seven C. jejuni loci (aspA, atpA, glnA, gltA, glyA, pgm, and tkt); however, adk and pgi were substituted for aspA and gltA in C. lari and for gltA and pgm in C. upsaliensis. Multiple C. coli (n = 57), C. lari (n = 20), C. upsaliensis (n = 78), and C. helveticus (n = 9) isolates, representing both clinical and environmental sources, were typed. All four species were genetically diverse: the majority (> 80%) of the isolates had unique sequence types (STs). Using this method, mixed C. lari, C. upsaliensis, and C. helveticus isolates were identified; upon separation, each isolate was shown to contain two strains of the same species with distinct STs. Additionally, the expanded MLST method was able to detect potential lateral transfer events between C. jejuni and either C. coli or C. lari and between C. upsaliensis and C. helveticus. Thus, the expanded MLST method will prove useful in differentiating strains of five Campylobacter species, identifying mixed Campylobacter cultures, and detecting genetic exchange within the genus.


Assuntos
Campylobacter coli/genética , Campylobacter lari/genética , Campylobacter/genética , Sequência de Bases , Campylobacter/classificação , Campylobacter/isolamento & purificação , Campylobacter coli/classificação , Campylobacter coli/isolamento & purificação , Campylobacter lari/classificação , Campylobacter lari/isolamento & purificação , Mapeamento Cromossômico , Primers do DNA , DNA Bacteriano/genética , DNA Bacteriano/isolamento & purificação , Humanos , Filogenia , Sorotipagem/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...